Конструкции обмоток трансформатора

Основные типы обмоток

  Проводник, который однократно охватывает стержень магнитопровода и в котором наводится ЭДС под воздействием магнитного поля трансформатора, называют витком. Виток является основным элементом обмотки и состоит из одного или нескольких параллельных проводов. Совокупность витков, образующих электрическую цепь, в которой суммируются ЭДС, наведенные в отдельных витках, называют обмоткой трансформатора. Обмотка состоит из проводников и изоляционных деталей, защищающих витки от электрического пробоя, препятствующих их смещению под действием электромагнитных сил и создающих каналы для охлаждения.
  Обмотки трансформаторов различаются взаимным расположением на стержне, направлением и способом намотки, числом витков, классом напряжения, схемой соединения концов обмоток между собой.

концентрическая обмотка трансформатора

 Начала и концы обмоток НН (низкого напряжения) трехфазных трансформаторов обозначают буквами а, в, с (начала) и  х. у, z (концы), обмоток ВН (высокого напряжения) — соответственно А, В, С и X, Y, Z. По взаимному расположению на стержне обмотки разделяют на концентрические и чередующиеся. 

чередующиеся обмотки трансформатора

Концентрические обмотки изготовляются в виде цилиндров, расположенных концентрически (одна в другой) на стержне магнитопровода (рис 1). Чередующиеся обмотки высокого и низкого напряжений трансформатора чередуются в осевом направлении на стержне магнитопровода (рис.2). Чередующаяся обмотка обычно подразделяется на симметричные группы, каждая из которых состоит из одной или нескольких частей обмотки ВН и расположенных по обе стороны от них частей обмотки НН. Из отдельных групп при больших токах могут быть легко образованы параллельные цепи. Чередующиеся обмотки применяют только в специальных  трансформаторах (например, электропечных, испытательных). Наиболее распространены концентрические обмотки. Обычно первой на стержне располагают обмотку НН, но возможны и другие варианты, когда первой размещают обмотку среднего напряжения, регулировочную или даже высокого напряжения.
   По конструкции и способу намотки различают обмотки цилиндрические (одно- или многослойные), катушечные и винтовые. Существуют также одно- или двухвитковые листовые и шинные обмотки, используемые в специальных трансформаторах с большими вторичными токами.Общие требования, предъявляемые к обмоткам трансформатора, можно подразделить на эксплуатационные и производственные. 
   Основными эксплуатационными требованиями являются электрическая и механическая прочность и нагревостойкость как обмоток, так и других частей и всего трансформатора в целом. Изоляция обмоток и других частей трансформатора должна выдерживать без повреждений коммутационные и атмосферные перенапряжения, которые могут возникнуть в сети, где трансформатор будет работать.Механическая прочность обмоток должна гарантировать их от механических деформаций и повреждений при токах КЗ, многократно превышающих номинальный рабочий ток трансформатора. Нагрев обмоток и других частей от потерь, возникающих в трансформаторе при нормальной работе и КЗ ограниченной длительности, не должен приводить изоляцию обмоток и других частей, а также масло трансформатора к тепловому износу или разрушению в сроки более короткие, чем обычный срок службы трансформатора (20—25 лет). Общие эксплуатационные требования, предъявляемые к трансформаторам и их обмоткам, регламентированы соответствующими  стандартами на силовые трансформаторы общего назначения, на различные специальные трансформаторы, на электрические испытания изоляции трансформаторов и т д Практически электрическая прочность изоляции обмоток достигается правильно-разработанной  конструкцией, правильным выбором изоляционных промежутков и изоляционных материалов и прогрессивной технологией обработки изоляции. Требование механической прочности обмотки удовлетворяется путем тщательного расчета поля рассеяния, т. е. правильного выбора типа и конструкции обмотки и расположения ее витков и катушек с таким расчетом чтобы возникающие в этой обмотке механические силы были по возможности меньшими,а механическая стойкость возможно большей.
    Для достижения необходимой нагревостойкости следует обеспечить свободную теплоотдачу в окружающую среду всего тепла выделяющегося в обмотках при допустимых для данного класса нагревостойкости  изоляции превышениях температуры обмоток над температурой окружающей среды, т. е. обеспечить достаточно большую поверхность соприкосновения обмотки с охлаждающей средой — маслом или воздухом. Общие производственные требования сводятся к изготовлению трансформатора с наименьшими затратами материалов и труда т.е. наиболее простого по конструкции, обеспечивающей соблюдение всех эксплуатационных требований. Эти требования, предъявляемые к трансформатору в целом, в полной мере относятся и к обмоткам. Задачей проектировщика является разумное сочетание интересов эксплуатации и производства. Эта задача, решается в значительной мере при выборе того или иного типа обмотки. Поэтому на выбор типа обмотки, наиболее полно отвечающей требованиям эксплуатации и в то же время простой и дешевой в производстве, следует обращать особое внимание.
   При расчете обмотки после выбора ее типа следует добиваться наибольшей компактности в ее размещении, распределении витков и катушек, с тем чтобы получить наилучшее заполнение окна трансформатора. Одновременно следует стремиться к получению достаточно развитой поверхности охлаждения обмотки и достаточного числа и размеров масляных (воздушных у сухого трансформатора) охлаждающих каналов в обмотках при обеспечении наименьшего сопротивления для движения в них охлаждающей среды,что дает возможность уменьшить внутренний перепад темпертуры в обмотках и как следствие этого, несколько уменьшить охлаждаемую поверхность бака трансформатора.

Типы обмоток трансформаторов

Типы Преимущества Недостатки
 Цилиндрическая одно-двух-слойная
из прямоуголного провода
 Простая технология изготовления,
хорошее охлаждение
 Малая механическая прочность
 Цилиндрическая многослойная из прямоугольного провода  Хорошее заполнение окна магнитной системы ,простая технология изготовления  Уменьшение охлаждаемой поверхности по сравнению с обмотками,имеющими радиальные каналы 
 Цилиндрическая многослойная из круглого провода  Простая технология изготовления   Ухудшение теплоотдачи и уменьшение механической прочности с ростом мощности
 Винтовая одно-двух- и многоходовая из прямоугольного провода  Высокая механическая прочность,надежная изоляция,хорошее охлаждение  Более высокая стоимость по сравнению с цилиндрической обмоткой
 Непрерывная катушечная из прямоугольного провода  Высокая электрическая и механическая прочность,хорошее охлаждение   Необходимость перекладки половины катушек при намотке
 Цилиндрическая многослойная и катушечная из алюминиевой фольги  Высокая механическая прочность,хорошее заполнение окна магнитной системы   Сложная технология изготовления обмоток высокого напряжения

 

 Конструкции цилиндрических обмоток:

  • простой,
  • многослойной,
  • многослойной из фольги

   
   Ряд витков, намотанных на цилиндрической поверхности,называют слоем обмотки. В одном слое может быть от одного до нескольких десятков витков, а в витке до шести-восьми и более параллельных проводов.Обмотку, состоящую из расположенного на цилиндрической поверхности слоя витков без интервалов, т. е. вплотную друг к другу, называют цилиндрической (рис.3), а состоящую из двух (или более концентрически расположенных слоев — двухслойной (многослойной) цилиндрической (рис.4).

  Витки двух- и многослойных обмоток имеют одинаковые развернутую длину и положение по отношению к полю рассеяния трансформатора. Переход из слоя в слой выполняют без обрыва провода в конце каждого слоя, при этом направление намотки слоев меняется. Двухслойную обмотку обычно наматывают из 
 
 

простая цилиндрическая обмотка трансформатора
  рис.3   1-виток;2,4-выравнивающие кольца, 3-изолирующие прокладки.
  рис.4 /. 4 — виитки, 2, 5 -дистанционные рейки; 3-выравнивавшее кольцо; 6-бумажно-бакелитовый цилиндр; 7-междуслойная изоляция; 8-канал. 9 — рейка. 10-изоляционное кольцо; 11- бакелитовый цилиндр; X1, Х2,Х3- регулировочные ответвления  
    разновидности обмоток трансформаторапрямоугольного провода плашмя, но можно и на ребро. Для выравнивания винтовой поверхности к крайним виткам прикрепляют разрезные бумажно-бакелитовые кольца (в виде «клина»), которые придают обмотке форму цилиндра. Кольца предохраняют витки от механических повреждений и создают опорную поверхность обмотки. Между слоями двухслойной обмотки устанавливают изоляцию из бумаги (электрокартона) или размещают равномерно по окружности несколько реек (прокладок), образующих вертикальный охлаждающий канал (рис.4,а).

Одно- и двухслойные цилиндрические обмотки применяют в качестве обмоток низкого напряжения до 690 В в трансформаторах мощностью менее 630 кВА. Многослойная цилиндрическая обмотка наматывается,как правило, из провода круглого сечения.Витки
обмотки плотно укладывают друг к другу с переходами из слоя в слой. Намотку первого слоя производят на бумажно-бакелитовом цилиндре. Между последующими слоями размещают кабельную бумагу. Для улучшения охлаждения между некоторыми слоями обмотки делают осевой канал с помощью дистанцирующих прокладок из электрокартона или бука. Такие многослойные цилиндрические обмотки применяют в качестве обмоток высокого напряжения для масляных трансформаторов мощностью до 400 кВА при напряжении до 35 кВ (рис. 4,б). По направлению намотки, подобно резьбе винта, различают обмотки левые и правые. Это относится к цилиндрическим, катушечным и винтовым обмоткам. В многослойных слоевых обмотках направление всей обмотки считается по направлению ее первого внутреннего слоя (рис.5).Направление намотки обмоток трансформатора
   Принципиально новой модификацией цилиндрической обмотки являются обмотки, намотанные из неизолированной алюминиевой фольги, находящие применение в трансформаторах мощностью от 25 до 630 кВА . Лента рулонной фольги имеет ширину, равную высоте катушки, а для обмоток с рабочим напряжением до 1 кВ -высоту обмотки. Изоляцией между витками служит полоса (или несколько вместе сложенных полос) конденсаторной, телефонной или кабельной бумаги. Ширина полосы бумаги принимается на 6-8 мм больше ширины ленты. Лента фольги вместе с полосой (полосами) бумаги наматывается на цилиндрической оправке с диаметром, равным внутреннему диаметру обмотки. После намотки обмотка снимается с оправки, бумага,выступающая за торцы обмотки на 3—4 мм, пропитывается эпоксидной смолой, запекается и обжимается, образуя монолитный изоляционный слой на торцовых поверхностях обмотки (катушки).
Обмотки из алюминиевой фольги легко наматываются, хорошо выдерживают механические воздействия при КЗ трансформатора и имеют высокую теплопроводность в осевом и радиальном направлениях, что приводит к более равномерному распределению температуры по высоте и ширине обмотки и к снижению температуры наиболее нагретой точки по сравнению с обмотками, намотанными из изолированного провода.
   Основными недостатками обмоток из алюминиевой фольги являются: высокая цена фольги, превышающая цену изолированного алюминиевого провода примерно на 40%; сложность изготовления обмоток высокого напряжения классов напряжения 10 и 35 кВ с обязательным разделением этих обмоток на катушки, соединяемые при помощи пайки, и трудность крепления отводов к обмоткам из фольги с толщиной менее 0,1 мм вследствие малой механической прочности этой фольги. Последний (и первый) виток обмотки из фольги толщиной 0,1—0,2 мм может завершаться алюминиевой шиной, прикрепленной к фольге точечной сваркой. Сложность изготовления обмотки высокого напряжения приводит к тому, что в некоторых случаях предпочитают обмотку низкого напряжения выполнять из фольги, а обмотку высокого напряжения из провода.
 Конструкции винтовых обмоток: одноходовой,многоходовой, из транспонированного провода
Винтовые обмотки могут быть одноходовыми (рис.6 а) и двухходовыми (многоходовыми) (рис.6 б). Одноходовая винтовая обмотка состоит из ряда витков, которые следуют один за другим по винтовой линии с каналами между ними. В каждый виток входит один или несколько параллельных проводов, укладываемых в один ряд вплотную друг к другу в радиальном направлении (рис.6,а,в).
Винтовые обмотки трансформаторов
Двухходовая (многоходовая) винтовая обмотка состоит из  двух (или более) одноходовых обмоток, вмотанных одна в другую в процессе изготовления. Каждый такой «ход» может включать до 40 параллельных проводов. Вертикальный канал вдоль внутренней поверхности обмотки и каналы между ее витками образуются рейками и прокладками (рис.6, г).
Витки винтовой обмотки состоят, как правило, из большого числа параллельных проводов, расположенных концентрически и на разном расстоянии от ее оси, поэтому провода, расположенные ближе к оси, будут короче, а более удаленные — длиннее. Разница в длине и положении проводов в поле рассеяния вызывает неравенство их электрических и индуктивных сопротивлений. Разные сопротивления приводят к неравномерному распределению тока между ними, т. е. к перегрузке по току и увеличению потерь в одних и недогрузке в других проводниках.
Для выравнивания распределения тока и,следовательно,снижения  добавочных потерь в винтовых обмотках выполняют различные виды транспозиций (перестановок). В одноходовой обмотке (обычно с числом проводов в витке до 12) используют комбинацию из транспозиции (рис.7а-в)
двух групповых, когда провода в витке разделяют на две группы и обе группы меняют местами, и общей, когда изменяется взаимное расположение всех параллельных проводов. Если в одноходовой обмотке имеется 12, 16 и более параллельных проводов,то применяют транспозицию Бюда, позволяющую еще снизить добавочные потери.
   В двухходовой винтовой обмотке используют равномерно распределенную транспозицию Хобарта, при выполнении которой все провода обмотки оказываются одинаково расположенными по отношению к продольному (осевому) полю рассеяния (длина проводов также почти одинакова) (рис.8).

    Винтовая обмотка обладает значительной торцовой поверхностью, обеспечивающей ее устойчивость к осевым усилиям при КЗ, хорошей механической прочностью и достаточной поверхностью охлаждения. Ее 

широко применяют для обмоток низкого напряжения с относительно небольшим числом витков и значительными вторичными токами в трансформаторах мощностью 1000 кВА и более.

  Винтовая обмотка с любым числом ходов может быть намотана, также из транспонированного провода. При этом отпадает необходимость в дополнительной транспозиции параллельных проводников, помимо той, которая сделана в самом проводе. 

равномерно распределенная обмотка трансформатора

  Конструкции непрерывных катушечных обмоток: простой переплетенной, с переплетением катушек, из подразделенного  провода
  Группу последовательно соединенных витков, наматываемую в виде плоской спирали и отделенную от других таких же групп называют катушкой, а обмотку, состоящую из ряда катушек расположенных в осевом направлении,-катушечной.
Катушечные обмотки могут быть дисковыми и непрерывными. Дисковая обмотка набирается из отдельно намотанных катушек, которые затем соединяют друг с другом электропайкой или другим способом (рис.9 а). Катушки считаются левыми, если провод от верхнего наружного конца укладывается против часовой стрелки, и правыми если провод укладывается по часовой стрелке. Непрерывная обмотка (рис.9,б) наматывается без разрывов, т. е. переход из одной катушки 1 в другую 6 (рис.9, д) производится без паек. Для этого при намотке перекладывают витки каждой нечетной катушки так, чтобы один переход (из катушки в катушку) был снаружи обмотки, а другой внутри. Катушки непрерывной обмотки наматывают на
рейки 3, образующие вертикальный канал вдоль внутренней поверхности обмотки. На рейках закрепляют прокладки 5 создающие горизонтальные каналы между катушками. Иногда рейки ставят и вдоль наружной поверхности обмотки.
В витках обмотки может быть несколько, от одного до шести параллельных проводов (рис.9, в). При двух и более проводах приходится выравнивать их длины и положение в магнитном поле рассеяния, для чего провода меняют местами, т. е. делают их транспозицию (рис.9,г, д). Транспозиция параллельных проводов в непрерывной обмотке выполняется в процессе намотки на каждом переходе из катушки в катушку. Как правило в одном пролете между двумя соседними прокладками (в одном «поле») делают переход одним параллельным проводом 2.
В местах перехода провод изгибается на ребро, и его изоляция в этом месте нередко повреждается. После изгиба ее обязтедыю восстанавливают, а сам провод надежно изолируют от соседних катушек (рис.9д). Непрерывные обмотки могут выполняться с ответвлениями для регулирования напряжения. Обычно ответвления делают от наружных витков, чтобы между двумя соседними ответвлениями заключались витки, соответствующие одной ступени регулирования. Преимуществом непрерывной катушечной обмотки (кроме отсутствия разрывов при намотке) является ее большая опорная поверхность и, следовательно, значительная устойчивость к oceвым усилиям при КЗ. Другое преимущество — относительно свободный проход масла как вдоль поверхности, так и поперек (в горизонтальные каналы между катушками). Хорошее охлаждение позволяет увеличивать мощность обмотки, не опасаясь теплового разрушения ее изоляции. Благодаря указанным преимуществам, непрерывные обмотки широко применяют в трансформаторах различных мощностей и напряжений. В последние годы защита обмоток от импульсных перенапряжений при классах напряжения от 220 кВ и выше выполняется путем сочетания емкостных колец с применением переплетенных
катушечных обмоток, т. е. обмоток, в которых порядок последовтельного соединения витков отличается от последовательности их расположения в катушках. Одна из схем переплетенной обмотки показана на рис. 10.переплетенные обмотки трансформаторов-схемы Каждая катушка наматывается двумя параллельными проводами, а затем производится соединение этих проводов по схеме. Возможны и другие способы переплетения
витков обмотки. Намотка переплетенной обмотки любого типа является более сложной и трудоемкой, чем намотка обычной непрерывной катушечной обмотки. При этом требуется увеличение электрической прочности изоляции витков и повышение плотности ее наложения, однако это усложнение технологии и увеличение стоимости обмотки окупается почти линейным начальным распределением импульсного напряжения и хорошей грозозащитой обмотки. В переплетенной обмотке отпадает необходимость в экранирующих витках, но используются емкостные кольца. Применение переплетенных обмоток в настоящее время является, по-видимому, наилучшим методом защиты от импульсных перенапряжений для обмоток классов напряжения от 220 до 750 кВ.
Дисковая обмотка ( рис.9, а) состоит из ряда отдельно намотанных одинарных или двойных (спаренных) катушек, каждая из которых имеет несколько витков, намотанных один на другой по спирали. В зависимости от напряжения катушки
дисковой обмотки могут иметь общую для всех витков дополнительную изоляцию, выполненную из лент кабельной или крепированной бумаги. Толщина дополнительной изоляции выбирается в зависимости от напряжения обмотки; в различных катушках одной обмотки она также может быть разной,— постепенно уменьшаясь от ввода в обмотку к основной ее части.
    Различают одинарные и двойные дисковые катушки. Применение одинарных, дисковых катушек удваивает количество паек, причем соединение одинарных катушек осуществляется пайкой их наружных и внутренних концов. Изолировку одинарных дисковых катушек удобно производить на специальных изолировочных станках. Намотку дисковых катушек производят обмоточным проводом прямоугольного сечения в один или более (до восьми) параллельных проводов. Число витков в катушке обычно 4—25. Намотанные дисковые катушки изолируют, собирают в группы, производят их технологическую обработку (прессовку и сушку), а затем из катушек (соответственно их окончательному положению в обмотке) собирают обмотку или отдельную ее часть. Соединяют двойные катушки пайкой их наружных концов, выполненных в виде переходов из одной катушки (секции) в другую. Вертикальный канал у внутренней поверхности и горизонтальные каналы между катушками образуются П-образными замковыми прокладками из электрокартона, которые собираются из штампованных длинных и коротких (служащих «заполнителем») пластин, скрепляемых между собой полосой-замком. При установке замковых прокладок в дисковую катушку их располагают симметрично по окружности, выдергивая столбы прокладок строго по вертикали. Длинные пластины замковых прокладок образуют в обмотке горизонтальные масляные каналы, а заполнители — вертикальные каналы. Дисковые обмотки являются наиболее трудоемкими при изготовлении. Они нашли широкое применение в мощных трансформатоpax. При напряжениях 110—330 кВ входная зона обмотки, а при напряжениях 500 кВ и выше — вся обмотка высокого напряжения, помимо витковой изоляции, должна иметь общую для всех витков дополнительную (катушечную) изоляцию. Поэтому в конструкции трансформаторов напряжением 110—330 кВ в обмотке высокого напряжения в непрерывной части обмотки «добавляют» изолированные дисковые катушки входной зоны, соединяя пайкой непрерывную и дисковую части обмотки. Обмотка высокого напряжения на напряжение 500 кВ вся состоит из дисковых катушек или выполняется переплетенной (петлевой).

  
К списку статей

 

Всего комментариев: 0

Оставить комментарий

Ваш email не будет опубликован.

Иконка левого меню
Иконка в правом меню